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1 CONTEXT AND OBJECTIVES

Autonomous vehicles (AVs) could bring great benefits to society, from reducing road fatali-
ties and injuries, to drastically reducing the carbon footprint of transportation systems, to
providing independence to those unable to drive. Further, AVs offer the AI community many
high-impact research problems in diverse fields including: computer vision, probabilistic
modelling, pedestrian and vehicle modelling and multi-agent decision making, to name a few.

AV systems are typically built of a pipeline of individual components, linking sensor inputs to
motor outputs. Raw sensory input is first processed by object detection and localization com-
ponents, resulting in scene understanding. Scene understanding can then be used by a scene
prediction component to anticipate other vehicles’ motions. Finally, decision components
transform scene predictions into commands that instruct AVs trajectories and short-term
movements.

In the context of this Thesis project, the focus is on the development of new methodologies
to enable decision components to operate an AV, based on its current understanding of the
surrounding environment, while taking into account the probabilistic – and thus uncertain –
nature of the problem, such that safety considerations and objectives can be systematically
fulfilled. In other words, the focus of this Thesis is on the topic of probabilistic reinforcement
learning: as a branch of machine learning, reinforcement learning (RL) is a computational
approach to learning from interactions with the surrounding world and is concerned with
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sequential decision making in unknown environments to achieve high-level goals. Usually, no
sophisticated prior knowledge is available and all required information to achieve the goal has
to be obtained through trials.

In a typical RL setup, an agent interacts with its surrounding world by taking actions. In
turn, the agent perceives sensory input that reveal some information about the state of the
world. Moreover, the agent perceives a reward/penalty signal that reveals information about
the quality of the chosen action and the state of the world. The history of taken actions and
perceived information gathered from interacting with the world forms the agent’s experience.
As opposed to supervised and unsupervised learning, the agent’s experience is solely based
on former interactions with the world and forms the basis for its next decisions. The agent’s
objective in RL is to find a sequence of actions, a strategy, that optimizes an expected long-term
reward/cost. Solely describing the world is therefore insufficient to solve the RL problem:
the agent must also decide how to use the knowledge about the world in order to make
decisions and to choose actions. Since RL is inherently based on collected experience, it
provides a general, intuitive, and theoretically powerful framework for autonomous learning
and sequential decision making under uncertainty.

In the context of this Thesis proposal, the problem setting is inherently hierarchical. In a
nutshell, the state of the world (also called the world model) is a probabilistic representation
of the surroundings of an AV, including object dynamics; the agent must learn a trajectory,
which is a composition of elementary actions. To make the problem more tractable, it is
decomposed into a hierarchy of sub-tasks. At the high level, a route planner defines a high
level goal, which is decomposed into medium and short term sub-goals. At the medium-term,
a behavioral planner defines macro-actions, whereas at the low-level, a motion planner im-
plements fine-grained actions involving, for example, acceleration/deceleration and steering
angles. Hierarchical reinforcement learning brings several advantages: for example, policies
learned to solve sub-problems can be reused for multiple parent tasks. In addition, the overall
value function (which guides the agents behavior) can be represented more compactly, as
the sum of separate terms that only depend on a subset of the state variables. This compact
representation requires less data to learn, leading to more efficient and fast learning. The
literature on hierarchical reinforcement learning also brings up several challenges (which
we briefly review below): in particular, in this Thesis project, we will address the problem of
learning how to decompose the overall goal into sub-problems, including the ability to factor
in country-specific requirements and behaviors.

1.1 OBJECTIVES

We now clearly identify the objectives of this Thesis proposal:

1. The first objective we consider is how to integrate the notion of uncertainty in the
behavioral and motion planning tasks. This involves the design of Bayesian, probabilis-
tic reinforcement learning methods, with the underlying hypothesis that uncertainty
permeates the full pipeline used to operate an AV, starting from the world model, the
transition model up to the actions and rewards.

2. Given the hierarchical nature of the overall route planning problem, an open question
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is how to learn a good abstract representation for actions at different levels of the
hierarchy, instead of relying on hand-crafted rules as it is frequently done in the literature.
Low-level actions are determined by the motion planner, whereas high-level goals are
determined by the route planner. In the middle, the objective of the behavioral planner
is to operate on a set of discrete actions that bridge the gap between high-level and low
level goals.

3. The problem we consider in this Thesis project can be seen as a multi-objective opti-
mization problem. Our objective, then, is to optimize for several aspects, including: i)
efficiency (e.g., time to reach a position, fuel consumption, ...); ii) safety (e.g., taking
into account regulatory guidelines); and iii) comfort (e.g., minimizing jerk, computed
as the derivative of the acceleration). As a consequence, we will investigate the notion
of a Pareto front of such an optimization problem, which allow exploring the tradeoff
between such objectives.

2 BACKGROUND

This Section is devoted to an overview of the literature, which we organize according to
three main categories: probabilistic machine learning, Bayesian reinforcement learning, and
Hierarchical reinforcement learning.

2.1 PROBABILISTIC MACHINE LEARNING

Broadly speaking, in Bayesian learning, we make inference about a random variable X by
producing a probability distribution for X . Inferences, such as point and interval estimates,
may then be extracted from this distribution. Let us assume that the random variable X is
hidden and we can only observe a related random variable Y . Our goal is to infer X from
the samples of Y . A simple example is when X is a physical quantity and Y is its noisy
measurement. Bayesian inference is usually carried out in the following way:

• We choose a probability density P (X ), called the prior distribution, that expresses our
beliefs about the random variable X before we observe any data.

• We select a statistical model P (Y |X ) that reflects our belief about Y given X . This model
represents the statistical dependence between X and Y .

• We observe data Y = y .

• We update our belief about X by calculating its posterior distribution using Bayes rule:

P (X |Y = y) = P (y |X )P (X )∫
P (y |X ′)P (X ′)d X ′

Assume now that P (X ) is parameterized by an unknown vector of parameters θ in some
parameter spaceΘ; we denote this as Pθ(X ). Let X1, · · · , Xn be a random i.i.d. sample drawn
from Pθ(X ). In general, updating the posterior Pθ(X |Y = y) is difficult, due to the need to
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compute the normalizing constant at the denominator. However, for the case of conjugate
family distributions, we can update the posterior in closed-form by simply updating the
parameters of the distribution: this is a simple example of probabilistic nonparametric models
such as Gaussian Processes (GPs), which we will extensively use in this Thesis proposal.

Probabilistic nonparametric models [9] offer flexibility and accurate quantification of un-
certainty. These models are probabilistic in the sense that they interpret data as realizations
of some unknown probabilistic process, and they use the language of probabilities (mainly
Bayes theorem) to âĂIJreverse-engineerâĂİ it. The nonparametric aspect of these models
is that they model the relationships among variables to describe the generative process by
means of probability distributions over functions. Despite the infinite dimensional nature of
these distributions, it is possible to tractably deal with the computations associated with the
inference of these models. The combination of the probabilistic and nonparametric nature of
these models is that the result of the inference process is a distribution over functions, which
characterizes all functions that are compatible with the observed data. This is of fundamental
importance to account for this source of uncertainty when making predictions and analyzing
data [9].

While probabilistic nonparametric models offer powerful tools for learning from data, they
are extremely complex to use in practice due to their poor scalability with the number of
observations. This is due to the need to repeatedly solve hard algebraic problems involving
large dense matrices. Some recent contributions demonstrate that it is possible to tackle these
issues by combining ideas from statistical physics, probabilistic modeling, and algebra [4],
but they also indicate that more work is needed to develop fully scalable solutions that do not
introduce bias in predictions and quantification of uncertainty.

2.2 BAYESIAN REINFORCEMENT LEARNING

Reinforcement learning (RL) [2, 10] is a class of learning problems in which an agent (or
controller) interacts with a dynamic, stochastic, and incompletely known environment, with
the goal of finding an action-selection strategy, or policy, to optimize some measure of its
long-term performance. The interaction is conventionally modeled as a Markov Decision
Process (MDP), or if the environment state is not always completely observable, as a partially
observable MDP (POMDP).

In contrast to supervised learning methods that deal with independently and identically dis-
tributed (i.i.d.) samples from a given learning domain, the Reinforcement Learning approach
involves agents learning from samples that are collected from the trajectories1 generated by its
sequential interaction with a given system (e.g., the environment generated by an egocentric
view of an autonomous car).

Traditionally, RL algorithms have been categorized as being either model-based or model-
free. In the former category, the agent uses the collected data to first build a model of the
domain’s dynamics and then uses this model to optimize its policy. In the latter case, the agent
directly learns an optimal (or good) action-selection strategy from the collected data.

1The attentive reader shall not confuse the term “trajectory” used in this section as representative of the random
path taken when exploring the underlying Markov Decision Process modeling the agent-system interaction,
and the term “trajectory” referred to that taken by an autonomous vehicle on the road.
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A major challenge in RL is in identifying good data collection strategies, that effectively
balance between the need to explore the space of all possible policies, and the desire to focus
data collection towards trajectories that yield better outcome (e.g., greater chance of reaching
a goal, or minimizing a cost function). This is known as the exploration-exploitation tradeoff
which, in other words, explains the tension that exists between either taking actions that are
most rewarding according to the current state of knowledge, or taking exploratory actions,
which may be less immediately rewarding, but may lead to better informed decisions in the
future. This challenge arises in both model-based and model-free RL algorithms.

Bayesian reinforcement learning (BRL) is an approach to RL that leverages methods from
Bayesian inference to incorporate uncertainty information into the learning process [8]. It
assumes it is possible to express prior information about the problem in a probabilistic manner,
and that new information can be incorporated using standard rules of Bayesian inference.
BRL enjoys three main advantages, when compared to traditional methods:

1. A major advantage of the BRL approach is that it provides a principled way to tackle the
exploration-exploitation problem. Indeed, the Bayesian posterior naturally captures the
full state of knowledge, subject to the chosen parametric representation, and thus, the
agent can select actions that maximize the expected gain with respect to this information
state. Indeed, Bayesian methods applied to RL deal with this difficult problem by
explicitly quantifying the value of exploration, which is made possible by maintaining
a distribution over the “so-called” probability kernel, which models state transitions
based on selected actions.

2. Another major advantage of BRL is that it implicitly facilitates regularization. As dis-
cussed in Section 2.1, for the general case, a Bayesian approach to inference induces an
implicit regularization, which favors simple models and helps mitigating overfitting.

3. Finally, another advantage of adopting a Bayesian view in RL is the principled Bayesian
approach for handling parameter uncertainty. Indeed, the goal is to explicitly represent
uncertainty over the model parameters, such as the probability kernel and the reward
function. One way to think about the Bayesian approach is to see the parameters as
unobservable states of the system, and to cast the problem of planning in an MDP with
unknown parameters as planning under uncertainty using the POMDP formulation.

Of course, several challenges arise in applying Bayesian methods to the RL paradigm. First,
there is the challenge of selecting the correct representation for expressing prior information in
any given domain. In the context of this Thesis project, in particular, the idea is also to encode
information about safety rules: it is yet to be proven that such information can be succesfully
incorporated in the prior, or if safety rules will override agents’ decision in presence of large
values of uncertainty. Second, defining the decision-making process over the information
state is typically computationally more demanding than directly considering the natural state
representation. It is then precisely in this context that we foresee important contributions
of this Thesis project: namely, we will leverage approximation techniques, such as low-rank
approximations, inducing points, and random feature projections, as well as a variational
approach to Bayesian inference (as discussed in Section 2.1), to make BRL computationally
efficient.
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In conclusion, Bayesian reinforcement learning offers a coherent probabilistic model for
reinforcement learning. It provides a principled framework to express the classic exploration-
exploitation dilemma, by keeping an explicit representation of uncertainty, and selecting
actions that are optimal with respect to a version of the problem that incorporates this uncer-
tainty [7].

2.3 HIERARCHICAL REINFORCEMENT LEARNING

Despite the exponential growth of advances in reinforcement learning, one original short-
coming that has been extensively studied in the literature relates to the problem of a fully
satisfactory method for incorporating hierarchies into reinforcement learning algorithms.

Many researchers (a noteworthy example is T. Dietterich [5]) have experimented with differ-
ent methods for hierarchical reinforcement learning and hierarchical probabilistic planning.
Previous research – extensively surveyed in works such as [1, 11, 10] – shows that there are
several important design decisions that must be made when constructing a hierarchical re-
inforcement learning system. The problems we shortly overview below still constitute open
issues as of today, and will be addressed in the development of this Thesis proposal.

The first issue is how to specify sub-tasks. Hierarchical reinforcement learning involves
breaking the target Markov decision problem into a hierarchy of sub-problems. There are
three general approaches to defining these sub-tasks. One approach is to define each sub-task
in terms of a fixed policy that is provided by the programmer, based on domain knowledge.
The second approach is to define each sub-task in terms of a non deterministic finite-state
controller. This allows the programmer to design a “partial-policy” that constraints the set of
actions available, but does not specify a complete policy for each sub-task. A third method
consists in defining each sub-task in terms of a termination predicate and a local reward [5].

The second design issue is whether to employ state abstractions within sub-tasks. A sub-
task employs state abstraction if it ignores some aspects of the state of the environment. An
example of approach that explicitly addresses this issue is the MAX-Q method [5].

The third design issue concerns the non-hierarchical “execution” of a learned hierarchical
policy. Ordinarily, in hierarchical reinforcement learning, the only states where learning is
required at the higher levels of the hierarchy are states where one or more of the subroutines
could terminate (plus all possible initial states). But to support non-hierarchical execution,
learning is required in all states (and at all levels of the hierarchy). In general, this requires
additional exploration as well as additional computation and memory.

The fourth issue is what form of learning algorithm to employ. An important advantage
of reinforcement learning algorithms is that they typically operate online. However, finding
online algorithms that work for general hierarchical reinforcement learning has been difficult,
particularly within the termination predicate family of methods. Due to the context of this
Thesis project proposal, online learning is not necessarily the best method to use. For this
reason, this fourth issue is not going to be problematic, although several research approaches
successfully address it [5].
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3 METHODOLOGY

In this section we outline the methodology that will be adopted throughout the execution of
this PhD project proposal:

• Bibliographic study: The proposed research topic contains a real academic dimension,
and a thorough bibliographic study is crucial to address it. First, the PhD student will
have to familiarize with the concept of Bayesian inference [3] and probabilistic machine
learning, with the goal of being able to come up with methodological contributions in
this field. More precisely, the PhD student will investigate applications of probabilistic
inference in the reinforcement learning domain, for which the literature has been
expanding in the last years [8, 7]. Given the application context of this Thesis proposal, it
is important to study the state of the art in motion planning algorithms as well, and how
to integrate the new methodologies to arrive at the definition of probabilistic trajectories.
In addition, a patent anticipation search will be conducted. All of these elements will
guide the further work.

• Methodological contributions: the goal of Thesis proposal is to go beyond the state of
the art in motion planning, by incorporating the notion of uncertainty that permeates
both the data and the learned statistical models. Due to the extremely demanding
computational requirements of Bayesian inference [3, 9, 4], we expect to come up with
methodological contributions in approximation algorithms to render probabilistic be-
havioral planning feasible in practice [7]. In addition, we will focus on Hierarchical
reinforcement learning, starting from a solid literature exploration []. Finally, the indus-
trial environment of this Thesis proposal, which include the need to develop solutions
for consumer vehicles (as opposed to high-end vehicles) as well as the requirement for
developing methodologies that can seamlessly integrate with regulatory-issued safety
constraints, calls for methodological contributions that comply with such operational
constraints.

• Simulation environments: the techniques suggested in this Thesis Proposal, namely
those that belong to the large family of reinforcement learning, require an appropriate
simulation environment to be effectively exploited. In fact, reinforcement learning alone
cannot be directly used by an autonomous vehicle to be trained âĂIJin the wildâĂİ, be-
cause the training process follows a simple âĂIJtrial-and-errorâĂİ approach that would
result in catastrophic losses of vehicles. As a consequence, a first step to validate the
methodological contributions outlined above consists in using realistic simulation envi-
ronments, whereby probabilistic motion planning based on reinforcement learning will
operate. This step will be approached both using virtual environments (a car simulator,
such as CARLA [6] for example) and real-life traces provided by Renault Software Labs.
Such traces should be representative of, for example, ground markings, traffic signs,
navigable space, obstacles, moving objects and their attributes (position, longitudinal,
lateral speeds, confidence, object class). A second step to validate the methods proposed
in this Thesis project is to enhance the current reinforcement learning paradigm by ex-
plicit human feedback. This would allow, when the project reaches acceptable maturity
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levels, to bypass the lengthy and computationally demanding simulation process, and
pave the road for more realistic experiments which are described next.

• Real-life experiments: the ultimate goal of this project is to contribute to both the
academic literature and the industrial sector with a through experimental evaluation of
probabilistic motion planning methods. Building on the possibility to include a human-
in-the-loop in the reinforcement learning methodology, we will develop methods to
perform real-life test-fields using the expertise, the infrastructure and the available
vehicles from Renault Software Labs.

4 RESEARCH ENVIRONMENT

The supervision of the PhD student will be arranged according to both academic and industrial
objectives of the Thesis:

• EURECOM: this is an internationally renowned team founded by Prof. Pietro Michiardi
and Prof. Maurizio Filippone, who are experts in probabilistic machine learning, and
in the design and implementation of scalable methodologies for large-scale learning
problems. In the context of this Thesis, EURECOM will provide the necessary back-
ground and mathematical tools to contribute with novel methodologies in the context
of probabilistic reinforcement learning. More precisely, the PhD student will be ex-
posed to Bayesian inference techniques for a sound quantification of uncertainty that
permeates the learning process, and the required approximation methodologies to ap-
proach probabilistic reinforcement learning with computationally efficient algorithmic
implementations.

• Renault Software Labs: this is a department of the Renault Alliance dedicated to the
design, prototyping and productization of autonomous driving solutions in which Dr-
Eng. Sébastien Aubert and Eng. Philippe Weingertner are contributing. In the context
of this Thesis, RSL will provide theoretical knowledge related to partially observable
Markov decision processes and reinforcement learning. In order to fit industrial needs,
the PhD student will challenge the superiority of its contributions with synthetic data -
based on in-house end-to-end simulator - and realistic data - remote and on-board -.

The student will benefit from an active and stimulating research environment, in an inter-
national scientific context, and will be brought to present his work in the major conferences
of the research fields related to this project (Bayesian statistics, machine learning theory,
reinforcement learning, etc.). The expected thesis work may lead to scientific publications
(newspapers, conferences), potentially accompanied by patents and technical reports. These
phases will ensure steady progress of the PhD student work, as well as prepare the road for
writing the final PhD Thesis manuscript.
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