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Context, scientific positioning

Modeling problems from biology, coding theory, combi-

natorics, robotics or aerospace engineering relies on fun-

damental problems such as solving polynomial systems

𝑓1 = · · · = 𝑓𝑚 = 0 in variables 𝑥1, . . . , 𝑥𝑛 exactly over a

finite field or rational numbers.

Solving polynomial systems is NP-hard even if the base

field is finite [23, Appendix A7.2]. Thus, the end-user may

ask several questions on the solution set: is it finite over

the algebraic closure of the base field? In the rational case,

are the complex or real solutions clustered? What is the

dimension of the solution set if it is not finite?

Solving such a system comes down to computing a repre-

sentation of its solution set. Furthermore, to bypass the

intrinsic numerical issues generated by the non-linearity

of the problem, we use mainly exact arithmetic to com-

pute over rational numbers or in finite fields. Moreover,

in the exact computation methods domain, which are thus

the ones providing the highest guarantees on the qual-

ity of the result, Gröbner bases computations is the main

tool to do so. Current Gröbner bases algorithms highly

rely on linear algebra with large matrices (several mil-

lions of rows and columns) with a very particular structure.

When this solution set has finite size D, we aim to com-

pute a lexicographic Gröbner basis of the ideal spanned

by 𝑓1, . . . , 𝑓𝑚 . In the fashion of Gaussian elimination it re-

turns a triangular system, which generically is of the form

𝑔𝑛 (𝑥𝑛) = 0, 𝑥𝑛−1 = 𝑔𝑛−1 (𝑥𝑛), . . . , 𝑥1 = 𝑔1 (𝑥𝑛), deg𝑔𝑛 = D.

Gröbner bases are a powerful tool but their computation

is in general exponential in 𝑛, though some Gröbner bases

are easier to compute than others. Indeed, the traditional
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strategy to obtain a lexicographic Gröbner basis is in two

steps. First, compute a Gröbner basis of the ideal, for a

total degree ordering using Buchberger’s [13] or Faugère’s

F4 [16] and F5 [17] algorithms. Then, apply a change of or-

dering algorithm on it using the FGLM algorithm [19] or its

faster variant, the Sparse-FGLM algorithm [20, 21]. In the

generic case, this step yields 𝑔𝑛, . . . , 𝑔1 in essentially O(D3)
operations. This latter algorithm guesses recurrence rela-

tions of a sequence through dedicated algorithms [2, 3, 6–9,

12, 25]. Let us notice that all these algorithms rely heavily

on linear algebra routines on structured matrices. Still,

their complexities are not satisfactory, mostly because the

structure of the matrices does not seem to be sufficiently

exploited.

Many computer algebra systems and libraries provide im-

plementations of these polynomial system solving algo-

rithms. We can cite FGb [18], Magma [11], Maple [29],

msolve [4, 5], Singular [15] and tinygb [31]. Among

these ones, only msolve, Singular and tinygb are open-

source.

Modular arithmetic. Historically, exact arithmetic uses

modular arithmetic with integer types. With the rise of

Central Processing Units (CPUs) vector extensions and

their performances over floating-pointer numbers com-

pared to integers, a new line of research was developed in

order to take advantage of these instructions. The idea is

to perform modular arithmetic over a 26-bit prime number

with double-precision floating-point number [24, 26]. Let

us notice that these missing 5 bits matter. Indeed, to reach

the same precision over rationals with 26-bit primes as

with 31-bit primes, we need to perform 20% more compu-

tations, see [30]. Thus, this can annihilate the gain from

using floating-point arithmetic and we shall pay a close

attention to this.

Graphics Processing Units (GPUs) are, by design, well-

suited to process large blocks of data in parallel and

thus to perform linear algebra routines, more so than

CPUs. Furthermore, they natively handle double-

precision floating-point number arithmetic but only sim-

ulate long integer ones through short integer arith-
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metic, which comes with an overhead. For instance,

Nvidia CUDA and Tensor cores, natively, only have

8-bit integer types, whereas they, natively, have 64-

bit floating-point types, see https://www.nvidia.com/
en-us/data-center/tensor-cores/. Furthermore, it

has been shown that GPUs are very efficient for correctly

rounding functions evaluations [22], reinforcing even more

the advantage of using floating-point arithmetic in order to

simulate a modular one. Thus, we aim to take advantage of

their computational power to transpose the linear algebra

code of our polynomial system solver msolve to efficiently

work with GPUs.

Faugère’s F4 algorithm. The F4 algorithm builds Macaulay

matrices, a special kind of structured matrices and sparse

matrices. Their rows represent generators, or multiples

thereof, of the ideals and their columns monomials. Thus,

these rows are not completely dense. Furthermore, since

several rows are given as multiples of a common polyno-

mial, they share all their coefficients. Yet, these coefficients

are dispatched pretty differently. This makes a dense rep-

resentation far from optimal but a sparse one, a priori

interesting.

The computation of a row echelon form of these matrices

corresponds to polynomial reductions and the rows start-

ing with many zeroes correspond to small polynomials

in the ideal. Therefore, this reduction can be only be per-

formed by following the monomial order given as an input

of the algorithm. Otherwise, the polynomial interpretation

of the computations can be erroneous. This row echelon

form is computed by blocks and two types of blocks appear

in these computations. Upper triangular ones and denses

ones. On the one hand, the triangular blocks are the most

convenient ones as they are easy to invert. On the other

hand, the dense ones are the bottleneck of this approach.

Faugère and Mou’s Sparse-FGLM algorithm. Another cen-

tral theme of this Ph.D. thesis is the design of matrix–vector

and matrix–matrix computations for the Sparse-FGLM al-

gorithm.

This algorithm relies on theWiedemann one for computing

the minimal polynomial of a particular matrix M of size

D, the number of solutions of the system. To do so, we

compute a vector sequence (𝑣𝑖 )0⩽𝑖<2D with 𝑣0 random and

𝑣𝑖+1 = M𝑣𝑖 . Among the D rows of the matrix M, some

are taken from the identity matrix: their only nonzero

coefficient is a 1. The other ones are, a priori, dense but

their coefficients can be read on theGröbner basis output by

the F4 algorithm. An hybrid representation of this matrix

is thus, in general, used. If we denote by 𝑡 this number of

dense rows, then the computation of 𝑣0, . . . , 𝑣2D−1 require
O(𝑡D2) operations and this is the bottleneck of the Sparse-
FGLM algorithm.

Ph.D. Objectives

The main objective of this Ph.D. thesis is the design of

fast Gröbner bases computation algorithms, based on high

performance linear algebra algorithms, in particular ex-

ploiting GPUs, and their integration into msolve in order

to tackle applications challenges such as multivariate cryp-

tography or robotics. This global goal will be decomposed

into three increasingly ambitious objectives, each of which

we envision taking about one year of the Ph.D.

Year 1: efficicent modular arithmetic. A first crucial goal

of this Ph.D. thesis is revisiting modular arithmetic at the

core of exact algorithms. The current msolve implemen-

tation on a CPU uses native integer types. However, the

GPU architecture only simulates the 64-bit type through

integer instructions on smaller sizes. Moreover, the emer-

gence of increasingly fast low precision arithmetics, both

with floating-point (fp16, bfloat16, fp8, . . . ) and inte-

ger (int8, int4) formats, provides new opportunities. In

particular, recent Nvidia GPUs provide so-called Tensor

core instructions that operate on low precision (16-bit or

less) inputs but perform all internal computations in higher

precision (32-bit).

The first objective will therefore be to assess which of the

native types of a range of CPU and GPU hardware are the

most suited for our computations depending both on the

sizes of the prime integers and the target rationals after the

reconstruction process. Indeed, if after performing com-

putations modulo a certain number of primes, the rational

reconstruction does not stabilize, it might be beneficial to

start computing with larger primes that do not fit onto

double-precision floating-point number. One approach

that will be explored in particular is to represent high pre-

cision numbers as the unevaluated sum of low precision

ones, in order to exploit low precision units such as GPU

Tensor cores.

Year 2: high performance linear algebra for Gröbner bases.

Once the basic kernels in modular arithmetic are efficient,

we will turn to their use within the Gröbner bases compu-

tation itself. The objective will be to design Gröbner bases

algorithms that are both efficient for handling our matrices

and dedicated to GPUs. A first naive implementation of

matrix–vector product on a GPU made the Sparse-FGLM

step 24 times faster than our efficient CPU implementation.

While this is very promising, our objective is to design an

even more efficient algorithm, aiming for a factor at least

100. To do so, we want to develop more efficient matrix–

matrix and matrix–thin matrix products on the GPU in

order to have a block-Wiedemann approach [14, 25] of

the Sparse-FGLM algorithm. Since the matrix at hand is

very particular, it can be seen as the concatenation of a

permutation matrix and a dense matrix after reordering

the columns, we will study how to balance more efficiently

the CPU load and the GPU load to iterate the product of

this matrix with some vectors or very thin matrices.
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This will require carefully optimizing the performance of

the Sparse-FGLMand F4 algorithms, on CPU and especially

on GPU. Maximizing the granularity of the computations

(e.g., the size of the matrix–vector products) and the data lo-

cality (to minimize cache misses and expensive data move-

ments) is indeed crucial to efficiently exploit GPUs [10,

28]. In particular, we will consider Keller-Gehrig’s algo-

rithm [27], that computes these vectors in increasing buck-

ets by densifying the matrix M and using matrix–matrix

products. Thus, another objective is the design of such

a GPU matrix–matrix product for this kind of matrices.

Here, this product is even a square computation, thus we

will study how to perform it efficiently computation- and

memory-wise. The densification of the matrix allows us to

compute more vectors but requires more memory at the

same time. Thus, this may make the graphic card memory

the roadblock of this approach. Hence, we shall keep in

perspective the cost-effectiveness of the computation of

the vectors through the Keller-Gehrig algorithm. We will

start by focusing on the two extreme cases: when 𝑡/D is

close to 0, so that the first powers of M are still relatively

sparse and when 𝑡 = O(D) so that M is so dense that its

powers cannot be much denser.

We also target the design of a sparse matrix arithmetic

which is both efficient for handling our Macaulay matrices

for the F4 algorithm and dedicated to a GPU or a CPU +GPU

architecture. As we plan to deal with Macaulay matrices

by splitting them into blocks, we want to take advantage of

the two kinds of processors to perform the computations

in parallel by sending some of these blocks to the GPU.

Year 3: Gröbner bases at scale. In the final year of the

Ph.D, we will aim to bring the efficient methods developed

during the first two years at scale, in order to tackle very

large problems whose solving will unlock new advances

in critical applications.

In order to do so, we will need to handle such large matri-

ces that even storing them on the GPU is not possible. We

will therefore devise new algorithms that exploit a mem-

ory representation of these Macaulay matrices that suits

our computations but also the limited RAM, a few tens of

gigabytes, of a graphic card.

Moreover, computing Gröbner bases at scale will require

the use of multiple GPUs and CPUs in parallel. We will

therefore work on making the algorithms scalable in a

parallel context. Notably, we will minimize memory com-

munication between the CPU and the GPU, such as by

adapt cache obivious storing and algorithms [1] to a larger

scale such as the RAM of the graphic card.
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