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PhD context and objectives: 
 
Artificial Intelligence (AI) and Machine Learning (ML) algorithms have been a subject of interest for several 

decades now. Although AI and ML have gone through hype cycles of disappointment and enthusiasm, recent 
algorithmic advancements, in particular Deep Neural Networks (DNNs) [1], as well as the availability of big data 
and the rapid growth of computing power, have renewed interest leading nowadays to applications in numerous 

distinct fields, i.e., robotics, medicine, autonomous vehicles, computer vision, speech recognition, natural 
language processing, gaming, etc.  
 

DNN models are computational intensive taking up a number of operations in the order of millions. From a 
hardware perspective, this poses severe challenges of data storage, data frequent movement, and processing 
speed on conventional Central Processing Units (CPUs) having a traditional Von Neumann computer 

architecture, commonly known as the “memory wall” problem. To this end, there is a pressing need for 
designing dedicated customized processors for AI, referred to as AI hardware accelerators, which belong to the 
larger family of domain-specific computing paradigms. Widely used AI hardware accelerators today are 

Graphics Processing Unit (GPUs) and Field-Programmable Gate Arrays (FPGAs), but orders of magnitude of 
energy-speed improvement can be achieved by Application-Specific Integrated Circuits (ASICs). 
 

Another high incentive for designing AI hardware accelerators is to push the execution of AI algorithms from the 
cloud closer to the sources of data onto edge devices. This is driven by energy, bandwidth, speed, availability, 
and privacy requirements. More specifically, edge computing reduces the data transfer requirement saving 

energy. Given the forecast of several tens of billions of edge devices in the near future being connected to the 
internet, edge computing would save bandwidth. Several applications, i.e., autonomous vehicles, require low-
latency, real-time computation which is slowed down due to the communication with the cloud. Also, several 

applications require availability, thus they need to be independent of the internet. Finally, handling data locally 
offers privacy as opposed to transmitting sensitive data over the cloud. Edge AI is a challenging objective since 
edge devices have limited resources and are often battery-operated.  

 
Design efforts towards embedded or application-specific AI hardware accelerators are intense and on-going. 
There are several design flavors. Analog and mixed-signal implementations can offer orders of magnitude lower 

power consumption compared to their digital counterparts, thus they may be better-suited for edge computing 
being capable of acting directly on sensory data from world-machine interfaces [2]. One way to reduce the 
energy consumption is approximate computing which refers to using approximate arithmetic units in the 

processing elements of the hardware neural network [3] or performing network compression or quantization, 
which means reducing the precision of the weights and neuron activation values by transforming floating point 
numbers into narrow few-bit integers [4]. Another design paradigm with tremendous is in-memory computing 



where the matrix-vector multiplications of the neural network are performed within the memory itself [5]. In-
memory computing has two main embodiments, namely performing arithmetic and logic operations within the 

on-chip SRAM or on memristive crossbar arrays. Finally, another trend is spiking neural networks which are the 
third generation of neural networks aiming at bridging the gap between biological neural networks and machine 
learning in terms of speed and energy consumption [6]. 

 
The objective of this thesis will be the design of a lightweight , low-energy AI hardware accelerator to be 
embedded onto edge devices. The particular application we are interested in is spectrum sensing [7]. The edge 

device will be connected to other devices as well as to the cloud. It is important to analyze in real-time the 
spectrum of the signals it is receiving for two principal reasons: (a) optimize the spectrum utilization, i.e., give 
priority to under-utilized frequency bands, so as not to congest the wireless network; and (b) detect incoming 

signals that present suspicious behavior for security purposes, i.e., jamming signals or signals of a side-channel 
attack attempting at stealing sensitive data out of the chip or bringing the chip into denial-of-service. First, a 
DNN model will be designed for incoming signal classification. Then, a dedicated AI hardware accelerator will 

be designed on which the DNN model will be mapped. The thesis will focus on the circuit -level implementation 
of the DNN accelerator and will reach up to chip fabrication in an advanced technology.  
 

The thesis will also study the security properties of the DNN accelerator, including resilience to adversarial 
attacks [8], backdoor attacks [9], DNN model theft [10], and fault injection attacks [11].  
 

The prospective student should be highly motivated and should have good background knowledge on analog 
and digital integrated circuit design. Knowledge on deep neural networks and cyber-security is a plus. 
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