Projet de recherche doctoral numero :4428

Description

Date depot: 1 janvier 1900
Titre: All-Digital Background Calibration of Timing Skews in undersampling TIADCs
Directrice de thèse: Patricia DESGREYS (LTCI (EDMH))
Directeur de thèse: Van Tam NGUYEN (LTCI (EDMH))
Domaine scientifique: Sciences et technologies de l'information et de la communication
Thématique CNRS : Non defini

Resumé: Time-Interleaved (TI) of ADCs is a technique to increase the overall system sample rate by using several ADCs in parallel. The challenge is to handle the mismatch between the individual ADCs [1-4], especially at high frequency. The digital calibration of channel and timming mismatches in a TI-ADC has attracted the interest of many researchers during the last decade. The main focus was on the calibration of channel gain [1-4] and timing mismatches [6-10]. Recently, the focus has shifted towards the calibration of FR mismatches [4, 11-14], as this can lead to further improvement in the overall performance of TI-ADCs. In [4] a method to compensate frequency response msimatches based on multi-rate theory and least-squares filter design was presented. The approach works well, however requires special calibration signals, the high filter complexity and extra calibration cycles. A better least-squares filter design method using multichannel filters was presented in [12], but the complexity is still high and the method requires known frequency responses or special input signals to identify them. The correction of bandwidth mismatch for two channel TI-ADC was first introduced in [11], where the correction is basically done as in [4]. A more comprehensive model to correct bandwidth mismatch in a tow channel TI-ADC was developed in [14] which introduces a tailored correction based on a single FIR fitler that channel TI-ADC further reduce the filter complexity. By injecting a test tone of some known frequency below the Nyquist filter, the bandwidth mismatch in a two channel TI-ADC is estimated in an adaptive way. The compensation of frequency response mismatches by using polynomial representations has been investigated in [16-17]. [18-19] presented a blind calibration structure based on a multi-rate filter bank for a two channel TI-ADC. In [16] a compensation structure based on the polynomial approximate frequency response mismatches was introduced. The proposed structure uses differentiators and variable multipliers corresponding to the parameters in polynomial models of the channel frequency responses. Comparing to the state of the art, our works for example in [8] take into account the implementation constraints. Not only theoretical study, modeling and simulations were carried out, but algorithms and digital techniques is tested in FPGA platform at very high frequency rate (>2.5GHz), the optimization of computing resource and power consumption is the key metrics in our approach. Another challenge of wideband ADC in general and TI-ADCs in particular is the non linearities which limit the dynamic range of the ADC, especially in TI-ADC where low order on-linearities are from interleaving and non-linearities caused by pre-ADC anaolog components ( such as, amplifiers, filters, buffers, and Smaple/hold). In this project, we will propose digital techniques for the post-processing of the output from TI-ADCs that enhances the linearity of the TI-ADC. It compensate static non-linearities and frequency dependent non-linearities and improves the dynamic range.

Doctorant.e: Le Duc Han